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Abstract

A physically motivated and thermodynamically consistent formulation of small strain higher-order gradient plasticity
theory is presented. Based on dislocation mechanics interpretations, gradients of variables associated with kinematic and
isotropic hardenings are introduced. This framework is a two non-local parameter framework that takes into consideration
large variations in the plastic strain tensor and large variations in the plasticity history variable; the equivalent (effective)
plastic strain. The presence of plastic strain gradients is motivated by the evolution of dislocation density tensor that results
from non-vanishing net Burgers vector and, hence, incorporating additional kinematic hardening (anisotropy) effects
through lattice incompatibility. The presence of gradients in the effective (scalar) plastic strain is motivated by the accu-
mulation of geometrically necessary dislocations and, hence, incorporating additional isotropic hardening effects (i.e.
strengthening). It is demonstrated that the non-local yield condition, flow rule, and non-zero microscopic boundary con-
ditions can be derived directly from the principle of virtual power. It is also shown that the local Clausius–Duhem inequal-
ity does not hold for gradient-dependent material and, therefore, a non-local form should be adopted. The non-local
Clausius–Duhem inequality has an additional term that results from microstructural long-range energy interchanges
between the material points within the body. A detailed discussion on the physics and the application of proper micro-
scopic boundary conditions, either on free surfaces, clamped surfaces, or intermediate constrained surfaces, is presented.
It is shown that there is a close connection between interface/surface energy of an interface or free surface and the micro-
scopic boundary conditions in terms of microtraction stresses. Some generalities and utility of this theory are discussed and
comparisons with other gradient theories are given. Applications of the proposed theory for size effects in thin films are
presented.
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1. Introduction

The problem in developing a macroscopic model embedded with a micromechanical-based theory of plas-
ticity which could be used as an engineering theory for both the analysis and in computer-aided design of
materials is a topical and still unsolved problem. Attempts to construct such a theory are faced with the dif-
ficulties in describing the microscopic structure of materials in terms of macroscopic mechanics. On the other
hand, at the present time, it is still not possible to perform quantum and atomistic simulations on realistic time
scale and structures. When load is applied, the inelastic deformation that occurs in most cases is not homo-
geneous, but reveals fluctuations on various length scales. This heterogeneity plays a key role in determining
the macroscopic properties of materials. A theory that bridges the gap between the conventional continuum
theories and the micromechanical theories should be developed as a remedy for this situation.

The emerging areas of micro and nanotechnologies exhibit important strength differences that result from
continuous modification of the material microstructural characteristics with changing size, whereby the smal-
ler is the size the higher is the strength of the material. There are many experimental observations which indi-
cate that, under certain specific conditions, the specimen size may significantly affect deformation and failure
of the engineering materials and a length scale is required for their interpretation. For example, experimental
work on particle-reinforced composites has revealed that a substantial increase in the macroscopic flow stress
can be achieved by decreasing the particle size while keeping the volume fraction constant (Lloyd, 1994; Rhee
et al., 1994; Zhu and Zbib, 1995; Nan and Clarke, 1996; Kiser et al., 1996). A similar strengthening effect asso-
ciated with decreasing the diameter of thin wires in micro-torsion test has been reported by Fleck et al. (1994)
and with decreasing the thickness of thin beams in micro-bending test has been reported by Stolken and Evans
(1998), Shrotriya et al. (2003), and Haque and Saif (2003). Moreover, micro- and nano-indentation tests have
shown that the material hardness increases with decreasing indentation size (e.g. Stelmashenko et al., 1993;
DeGuzman et al., 1993; Ma and Clarke, 1995; Poole et al., 1996; McElhaney et al., 1998; Lim and Chaudhri,
1999; Elmustafa and Stone, 2002; Swadener et al., 2002). The experimental work by Taylor et al. (2002) shows
an increase in the flow stress with decreasing hole size for geometrically similar perforated plates under
tension.

The aforementioned dependence of mechanical response on size could not be explained by the classical con-
tinuum mechanics since no length scale enters the constitutive description. A multiscale continuum theory,
therefore, is needed to bridge the gap between the classical continuum theories and micromechanical theories.
In all of the problems mentioned above, a continuum approach is appropriate since the collective nature of
material defects is sufficiently large and faraway from individuality. Moreover, since the increase in strength
with decreasing scale can be related to proportional increase in the strain gradients in each of the aforemen-
tioned experiments, the gradient plasticity theory has been successful in addressing the size effect problem.
This success stems out from the incorporation of a microstructural length scale parameter through functional
dependencies on the plastic strain gradient of non-local media (Aifantis, 1984, 1987). The gradient-dependent
theory abandons the assumption that the stress at a given point is uniquely determined by the history of strain
at this point only. It takes into account possible interactions with other material points in the vicinity of that
point. However, in the past decade, the physical basis of the gradient plasticity theory for metals has been
founded on theoretical developments concerning geometrically necessary dislocations (GNDs). Standard
micromechanical modeling of the inelastic material behavior of metallic single crystals and polycrystals is
commonly based on the premise that resistance to glide is due mainly to the random trapping of mobile dis-
locations during locally homogeneous deformation. Such trapped dislocations are commonly referred to as
statistically stored dislocations (SSDs), and act as obstacles to further dislocation motion, resulting in hard-
ening. As anticipated in the work of Ashby (1970) an additional contribution to the density of immobile dis-
locations and so to hardening can arise when the continuum length scale approaches that of the dominant
microstructural features. An extensive review of the recent developments in gradient-dependent theory can
be found in Abu Al-Rub (2004). A short review of these developments is presented here.

Many researchers have contributed substantially to the gradient approach with emphasis on numerical
aspects of the theory and its implementation in finite element codes (e.g. Lasry and Belytschko, 1988; Zbib
and Aifantis, 1988; de Borst and Mühlhaus, 1992; de Borst et al., 1993; Pamin, 1994; de Borst and Pamin,
1996; Bammann et al., 1999; Abu Al-Rub and Voyiadjis, 2005; Voyiadjis and Abu Al-Rub, in press). In par-
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allel, other approaches that have length scale parameters in their constitutive structure (commonly referred to
as non-local integral theories) have appeared as an outgrowth of earlier work by Eringen in non-local contin-
uum elasticity and phenomenological hardening plasticity (e.g. Eringen and Edelen, 1972) and Bazant in strain
softening media (e.g. Pijaudier-Cabot and Bazant, 1987; Bazant and Pijaudier-Cobot, 1988). Another class of
gradient theories have been advocated in the last decade that assume higher-order gradients of the displace-
ment field (e.g. Fleck et al., 1994; Fleck and Hutchinson, 1993, 1997, 2001; Nix and Gao, 1998; Gao et al.,
1999; Gao and Huang, 2001; Hwang et al., 2002; Gurtin, 2000, 2003). This group of theories is in fact a par-
ticular case of the generalized continua, such as micromorphic continua (Eringen, 1968), or continua with micro-

structure (Mindlin, 1964), which were all inspired by the pioneering work of the Cosserat brothers (Cosserat
and Cosserat, 1909). The Cosserat continuum (or micropolar continuum) enhances the kinematic description of
deformation by an additional field of local rotations, which can depend on the rotations corresponding to the
displacement field, i.e. on the skew-symmetric part of the displacement gradient for the small displacement
theory, or on the rotational part of the polar decomposition in the large-displacement theory. However,
the works of Mindlin, Cosserat, and Eringen are based on the classical balances of linear and angular momen-
tum. In contrast, the works of Fleck and Gurtin involve the introduction of additional balances over and
above these classical balances; e.g. for single-crystal plasticity there is a new balance for each slip system
involving forces that expend power in consort with slip on that system. Dislocation based gradient plasticity
theories that are motivated by the generation of GNDs and incompatibility of lattice deformation have been
advanced by Acharya and Bassani (2000), Acharya and Beaudoin (2000), Bassani (2001), Voyiadjis and Abu
Al-Rub (2004, 2005), and Abu Al-Rub and Voyiadjis (2006, in press). However, these theories preserve the
same structure of classical plasticity with no additional boundary conditions.

Numerous variational formulations and thermodynamic frameworks have also been proposed since the
1990s in order to extend the classical (local) constitutive theory to a non-local (gradient-dependent) theory.
However, these constitutive models are far from being firmly established. Moreover, the various proposals
are also quite different with respect to the structure of the equations. Mühlhaus and Aifantis (1991) formulated
the classical (local) incremental variational principle by incorporating first-order gradients of the effective (sca-
lar) plastic strain variable which contributes to the isotropic hardening/softening plasticity. Extra boundary
conditions and higher-order stresses were derived. However, in their formulation the higher-order tractions
that result from higher-order gradients were not considered. Fleck and Hutchinson (2001) reformulated their
earlier theory (Fleck and Hutchinson, 1993, 1997) based on the variational principle of Mühlhaus and Aifantis
(1991) but with different constitutive structure. In the formulation of Fleck and Hutchinson (2001) higher-
order tractions, higher-order stresses, and extra boundary conditions were derived. Valanis (1996) and Fre-
mond and Nedjar (1996) postulated the dependence of the Helmholtz free energy on scalar variables and
on its first-order gradients. Additionally, they checked the consistency of their constitutive equations using
the classical (local) form of the Clausius–Duhem inequality. However, Polizzotto (e.g. Polizzotto and Borino,
1998; Polizzotto, 2003) assumed a non-local form of the Clausius–Duhem inequality based on the concept of
non-locality energy residual introduced by Eringen and Edelen (1972). First- and second-order gradients of
the effective plastic strain were incorporated in their formulation in which the non-locality residual enters
the definition of the Clausius–Duhem inequality as an extra term that accounts for the energy exchanges
between the particles in the domain of interest at the microstructural level. Moreover, Polizzotto proposed
the insulation condition, which assumes the vanishing of the total non-local residuals over the whole volume
of the body, in order to derive the extra boundary conditions. The thermodynamic framework of Polizzotto
was used by Steinmann (e.g. Mentzel and Steinmann, 2000; Liebe and Steinmann, 2001) to derive several
strain gradient plasticity models where the second-order gradient of the effective plastic strain was incorpo-
rated. Shizawa and Zbib (1999) derived a rigorous thermodynamical theory of finite strain gradient plasticity
by incorporating kinematic gradient hardening effects through the concept of dislocation density tensor. Sim-
ilar gradient-based thermodynamic framework was proposed by Svendsen (2002). Another thermodynamic
approach was developed by Gurtin (e.g. Gurtin, 2000, 2002, 2003, 2004) who treated the plastic strain gradi-
ents as independent variables, which is different than the above frameworks, and introduced the concept of
microforce balance, which is shown in this paper to be equivalent to the yield condition. Gurtin introduced
both isotropic and kinematic gradient hardening effects and argued that the plastic flow direction is governed
by a microstress, obtained from the microforce balance, and not the deviatoric Cauchy stress. In Gurtin’s
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framework, however, only kinematic hardening variables enter the variational formulation without the isotro-
pic hardening variables. Very similar framework has been proposed by Gudmundson (2004). Bammann (2001)
has developed a dislocation based thermodynamic framework that incorporates the effect of geometrically
necessary dislocations through the curl of the plastic deformation gradient. Thermodynamic approaches to
gradient-dependent plasticity and damage models were developed by Voyiadjis and co-workers (Voyiadjis
et al., 2001, 2003, 2004; Abu Al-Rub and Voyiadjis, 2006, in press) who postulated the dependence of the
Helmholtz free energy on scalar and tensorial hardening/softening variables and its second-order gradients.
However, no explicit treatment of non-standard boundary conditions was considered in this framework. Clay-
ton et al. (2006) presented a novel finite deformation thermodynamic framework to describe spatial rotational
gradients in crystals by introducing a mathematical concept for geometrically necessary disclinations at grain
boundaries. However, the effects of these rotational gradients are expected to be minimal in small strain
problems.

The gradient theory has been applied to interpret size-dependent phenomena including, shear banding,
micro- and nano-indentation, twist of thin wires, bending of thin films, void growth, crack tip plasticity,
fine-grained metals, strengthening in metal matrix composites, multilayers, etc. (see Abu Al-Rub (2004) for
a detailed review). Therefore, practical applications of gradient-dependent theories include, but not limited
to, sensors, actuators, microelecromechanical systems (MEMS), microelectronic packaging, advanced com-
posites, micromachining, welds, and functionally graded materials. However, the full utility of the gradient-
type theories in bridging the gap between modeling, simulation, and design of modern technology hinges
on one’s ability to determine accurate values for the constitutive length scale parameter that scales the effects
of strain gradients. The study of Begley and Hutchinson (1998), Nix and Gao (1998), Shu and Fleck (1998),
Yuan and Chen (2001), Abu Al-Rub and Voyiadjis (2004a,b), and Abu Al-Rub (2004) indicated that inden-
tation experiments might be the most effective test for measuring the length scale parameter ‘. Moreover, in
spite of the crucial importance of the length scale parameter in gradient theory, very limited work is focused on
the physical origin of this length scale parameter. The discrete dislocation origin of this length scale is rarely
clear and its value is a free parameter. However, initial attempts have been made to relate ‘ to the microstruc-
ture of the material. Nix and Gao (1998) identified ‘ as L2/b, where L is the average spacing between dislo-
cations, and b is the magnitude of the Burgers vector. Moreover, Abu Al-Rub and Voyiadjis (2004a,b),
and Voyiadjis and Abu Al-Rub (2004) found ‘ to be proportional to the mean free path of the dislocations,
L. Abu Al-Rub and Voyiadjis (2004b) also derived an evolution equation for ‘ as a function of temperature,
strain, strain-rate, and a set of measurable microstructural physical parameters. Voyiadjis and Abu Al-Rub
(2005) and Abu Al-Rub and Voyiadjis (2006, in press) found that the length scale varies with the course of
plastic deformation, grain size, characteristic dimension of the specimen, and hardening exponent.

The objective of this paper is to develop a consistent thermodynamic framework that extends the J2 flow
theory to include the effects of strain gradients. This is achieved within the extent of small strain/small rotation
plasticity and rate-independent material response. The pioneering works contributed by, among others, Aifan-
tis, Eringen, Gurtin, Polizzotto, Fleck, and Hutchinson, and their co-workers, have been the source of inspi-
ration to this work. The concepts of non-locality residual, the principle of virtual power, the second-law of
thermodynamics, the maximum dissipation theorem, and the Onsager reciprocity principle are used in this
paper to extend the well-known procedures of classical thermodynamics and local-type constitutive theory
to gradient-dependent theory. This theory is a two non-local parameter theory that takes into account large
variations in the plastic strain tensor and large variations in the accumulated (scalar) plastic strain. Both iso-
tropic and kinematic gradient hardening effects are considered in the present work. In addition, a framework
for the formulation of consistent microscopic boundary conditions is presented. It is shown in this work that
there is a close connection between the microtraction stress and the surface/interface energy density of an
interface or free surface as proposed by Fredriksson and Gudmundson (2005). Using a simplified version
of the proposed theory, the length scale effects are investigated in detail for biaxial tension, pure shear, and
temperature decrease for a thin film on a thick substrate.

The layout of this paper is as follows: In Section 2, crystallographic evidence for the presence of strain gra-
dients is presented based on non-vanishing Burgers vector and the accumulation of geometrically necessary
dislocations. In Section 3, the gradient plasticity theory is formulated based on the principle of virtual power
and the second-law of thermodynamics. Section 4 presents some examples for the functional dependence of
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the Helmholtz free energy on strain gradients. Section 5 presents some recent applications of gradient plastic-
ity to handle size effects in metallic thin films.
1.1. Notation

Hereafter, kk is the Euclidean norm of second rank tensors, (:) stands for tensor contraction, the superim-
posed dot (Æ) indicates the differentiation with respect to time t, and a comma followed by an index i denotes
differentiation with respect to xi. The first-order gradient, divergence, curl, and Laplacian of a tensor field A

are defined by (div A)i = Aij,j, (curl A)ij = eipqAjq,p, ($2A)ij = Aij,kk, and ðrAÞijk ¼ Aij;k, respectively.
2. Crystallographic basis for presence of plastic strain gradients

2.1. Basic kinematics

The classical theory of isotropic plastic solids undergoing small deformations is based on the additive
decomposition of the displacement gradient, $u, into elastic and plastic parts, where $ue being the elastic com-
ponent and $up being the corresponding plastic component such that:
ui;j ¼ ue
i;j þ up

i;j; up
k;k ¼ 0 ð1Þ
where the superscripts ‘e’ and ‘p’ designate the elastic and plastic components, respectively. The component
$ue represents rotation and stretching of the material structure, while the component $up represents the plastic
distortion and characterizes the evolution of dislocations and other defects through this structure.

For small-strain formulation in classical continuum theory, the total second-order strain tensor, e, is
defined by the symmetric part of the displacement gradient $u such that
eij ¼
1

2
ðui;j þ uj;iÞ ð2Þ
which can also be decomposed into elastic and plastic parts, where ee being the elastic component and ep being
the corresponding plastic component such that:
eij ¼ ee
ij þ ep

ij; ep
kk ¼ 0 ð3Þ
The components ee and ep are the symmetric parts of $ue and $up, respectively, and are given by
ee
ij ¼

1

2
ðue

i;j þ ue
j;iÞ; ep

ij ¼
1

2
ðup

i;j þ up
j;iÞ ð4Þ
From the kinematics of dislocation motion, the plastic part of the displacement gradient arising solely from
slips, p(b), on all systems (b = 1, . . . ,N) is taken to be
up
i;j ¼

X
b

pðbÞsðbÞi nðbÞj ð5Þ
where s(b) and n(b) are the unit vectors characterizing the slip direction on the slip plane b and its normal,
respectively, such that ks(b)k = kn(b)k = 1 and s(b) Æ n(b) = 0.

Substituting Eq. (5) into Eq. (4)2 gives the plastic strain tensor in terms of the plastic slip as
ep
i;j ¼

X
b

pðbÞlðbÞij ð6Þ
where l(b) is the symmetric Schmidt orientation tensor given by
lðbÞij ¼
1

2
ðsðbÞi nðbÞj þ nðbÞi sðbÞj Þ ð7Þ
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2.2. Nye’s dislocation density tensor and geometrically necessary dislocations

Material deformation in metals enhances the dislocation formation, the dislocation motion, and the dislo-
cation storage. The dislocation storage causes material hardening. The stored dislocations generated by trap-
ping each other in a random way are referred to as statistically stored dislocations (SSDs), while the stored
dislocations that maintain the plastic deformation compatibilities (continuity) within the polycrystal (or var-
ious components of the material) caused by non-uniform dislocation slip are called geometrically necessary
dislocations (GNDs). Their presence causes additional storage of defects and increases the deformation resis-
tance by acting as obstacles to the SSDs (Nye, 1953; Kröner, 1962; Ashby, 1970).

In order to account for strain-gradient effects, one makes use of the GNDs concept. The Nye’s dislocation
density tensor a, which is a representation of GNDs such that aij is the i-component of the resultant Burgers
vector related to GNDs of line vector j, is defined as (Nye, 1953; Fleck and Hutchinson, 1997; Arsenlis and
Parks, 1999; Bassani, 2001)
aij ¼
X

n

qðnÞG bðnÞi tðnÞj ð8Þ
where qðnÞG is the density of GNDs along slip system n = 1, . . . ,G, b(n) is the Burgers vector, and t(n) is the unit
vector tangent to a GND. It can be noticed that SSDs do not contribute to the Nye’s tensor. Moreover, the
distribution of SSDs is redundant such that it can be assumed to be uniformly distributed over the crystal,
while the distribution of GNDs is non-redundant and is non-uniform.

The total accumulation of GNDs is obtained as the magnitude of Nye’s dislocation density tensor such that
a ¼ ffiffiffiffiffiffiffiffiffiffi
aijaij
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
n

X
f

H ðn;fÞqðnÞG qðfÞG bðnÞi bðfÞi tðnÞj tðfÞj

s
ð9Þ
where H(n,f) = H(f,n)(H(f,f) = 1) is a dimensionless matrix which phenomenologically attempts to account for
the interaction among different slip systems (resulting in the so-called latent hardening). However, for the sake
of simplicity, one can neglect the interaction among different slip systems (i.e. H(n,f) = dnf, dnf, being the
Kronecker delta), in which case a reads as follows:
a ¼ bqG ð10Þ
where b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðnÞ � bðnÞ

p
is the magnitude of the Burgers vector, qG ¼

P
nq
ðnÞ
G is the total GNDs density, and

t(n) Æ t(n) = 1.
Non-vanishing a implies the existence of GNDs in the sense that the excess of dislocations of one sign, i.e.

the net Burgers vector b, in any region S bounded by a closed curve C, is given by Fleck et al. (1994), Fleck and
Hutchinson (1997), Arsenlis and Parks (1999), and Bassani (2001)
bi ¼
I

C
up

i;p dxp ¼
Z

S
ejklu

p
i;lknj dA ð11Þ
where the Stokes’ theorem is used to obtain the right part, n is the unit normal to surface S whose boundary is
the curve C, and e is the permutation tensor. Thus, one obtains the Nye’s dislocation density tensor a as (Fleck
and Hutchinson, 1997; Arsenlis and Parks, 1999; Bassani, 2001):
aij ¼ ejklu
p
i;lk ð12Þ
such that a = (curlep)T where the superscript ‘T’ stands for the transpose. In the classical theory of isotropic
plasticity the plastic spin
wp
ij ¼

1

2
ðup

i;j � up
j;iÞ ð13Þ
is essentially irrelevant, as it may be absorbed by its elastic counterpart without affecting the resulting field
equations (Gurtin and Anand, 2005). Therefore, by assuming irrotational plastic flow (i.e. wp = 0 and
$up = ep), Eq. (12) can be written in terms of the plastic strain gradient rep as
aij ¼ ejkle
p
il;k ð14Þ
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By substituting Eq. (6) into Eq. (14), a is written by Fleck et al. (1994), Fleck and Hutchinson (1997), Arsenlis
and Parks (1999), Bassani (2001), and Bittencourt et al. (2003) as follows:
aij ¼
X

b

pðbÞ;k gðbÞikj ð15Þ
where g is defined by
gðbÞikj ¼ ejkll
ðbÞ
il ¼

1

2
ejklðsðbÞi nðbÞl þ nðbÞi sðbÞl Þ ð16Þ
Similarly, by taking the gradient of Eq. (6), one can write
ep
il;k ¼

X
b

pðbÞ;k lðbÞil ð17Þ
Therefore, Eq. (15) relates the dislocation density tensor to the slip gradients. Equating Eqs. (14) and (8) gives
the gradient of plastic strain tensor in terms of GNDs density as
ejkle
p
il;k ¼

X
n

qðnÞG bðnÞi tðnÞj ð18Þ
Similar to Eq. (9), one can also define the accumulation of GNDs, a, from Eq. (15) as follows:
a ¼
X

b

X
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H ðb;fÞpðbÞ;k pðnÞ;p gðbÞikj g

ðnÞ
ipj

q
ð19Þ
Neglecting the interaction among different slip systems gives
a ¼
X

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðbÞ;k pðbÞ;k

q
ð20Þ
where g
ðbÞ
ikj g

ðbÞ
ipj ¼ dkp. It can be seen that the accumulation of GNDs is related to the magnitude of plastic slip

gradients. Equating Eqs. (10) and (20) gives the magnitude of plastic slip gradients in terms of the GNDs den-
sity as
X

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðbÞ;k pðbÞ;k

q
¼ bqG ð21Þ
Therefore, from Eqs. (18) and (21) one should consider the effects of both rep and $p in the development of
scale-dependent plasticity such that rep and $p can not exist without the other and they introduce additional
kinematic and isotropic hardenings, respectively. As shown above, the third-order tensor ðrepÞijk ¼ e

p
ij;k is

attributed to a non-vanishing net Burgers vector at the microscale, while ($p)k = p,k is attributed to the accu-
mulation of the GNDs. Both rep and $p are considered in the following thermodynamic formulation as addi-
tional non-local state variables.

In classical continuum plasticity, the isotropic hardening variable (history variable), _p, is defined as the rate
of the local effective plastic strain, which is intended to measure the SSD density and is expressed by
_p ¼ k_ep
ijk ¼

ffiffiffiffiffiffiffiffiffi
_ep

ij _e
p
ij

q
ð22Þ
Substituting Eq. (6) into the above expression and neglecting interactions between different slip planes, yields
_p ¼

P
b _pðbÞ. Therefore, in the following variational framework the local kinematic fields e

p
ij and p as well as the

non-local kinematic fields e
p
ij;k and p,k are considered.

3. Thermodynamics of higher-order gradient plasticity

In order to be able to model the small-scale phenomena, such as the effect of size on the material mechanical
properties and the width of the localization zones in softening media, an attempt is made now to account for
the effect of non-uniform distribution of micro-defects on the homogenized response of the material. The main
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issue is that the classical plasticity theory does not posses an intrinsic material length scale which makes it inca-
pable of predicting such phenomena. Based on the discussion in the previous section, the dependence of the
internal power on rep and $p is the essential ingredient for the proposed strain gradient plasticity. Moreover,
dependence on classical kinematic measures: the elastic strain tensor, ee, the plastic strain tensor, ep, and accu-
mulation of plastic strain, p, is assumed.

In the classical continuum plasticity theory, one can define the unit direction of the plastic strain tensor as
Nij ¼
_ep
ij

_ep
ij

�� �� ¼ _ep
ij

_p
) _ep

ij ¼ _pN ij ð23Þ
such that one writes
kNijk ¼ N ijNij ¼ 1) N ij

_ep
ij

_p
¼ 1) _p ¼ Nij _e

p
ip ð24Þ
where Eq. (23)2 corresponds to the normality flow rule to the yield surface f in the classical continuum plas-
ticity theory, _ep ¼ _kof =or where N = of/or and _p ¼ _k, similar to Eq. (6) in crystal plasticity theory. This is
emphasized in Section 3.7.

One can write the following useful relation by taking the gradient of _p ¼
ffiffiffiffiffiffiffiffiffi
e

p
ije

p
ij

q
such that
_p;k ¼
_ep

ij _e
p
ij;kffiffiffiffiffiffiffiffiffiffiffiffi

_ep
mn _ep

mn

p ¼
_ep

ij

_p
_ep

ij;k ¼ N ij _e
p
ij;k ð25Þ
where Eq. (23)1 is utilized. Moreover, one can notice from Eqs. (24)3 and (25) that
Nij;k _ep
ij ¼ 0k ð26Þ
where 0 is a zero vector. The result in Eq. (26) implies that $N is normal to _ep.
Equivalently, one can also obtain the above result by operating on the identity NijNij = 1, Eq. (24)1, by the

gradient, which yields
Nij;kN ij þ NijN ij;k ¼ 0k ) N ij;kN ij ¼ 0k ð27Þ

Multiplying both sides of Eq. (27)2 by _p and using the result in Eq. (23)2 yields Eq. (26).

It is noteworthy that at the crystal level one can express rep by Eq. (17) directly from Eq. (6) such that
$l(b) = 0. However, for polycrystals, operating in Eq. (23)2 by the gradient yields
_ep
ij;k ¼ _p;kN ij þ _pN ij;k ð28Þ
such that $N 5 0.
In continuum plasticity, the generalized rate of total accumulation of the plastic strain and plastic strain

gradients can thus be defined as (e.g. Fleck and Hutchinson, 2001; Gurtin, 2003; Gudmundson, 2004):
_Ep2 ¼ _p2 þ ‘2 _p;k _p;k ¼ _ep
ij _e

p
ij þ Aijmn _ep

ij;k _ep
mn;k ð29Þ
where Eq. (25) is used in obtaining the second part, Aijmn = ‘2 NijNmn with ‘ is the material length scale param-
eter used for dimensional consistency, and Ep is the non-local effective plastic strain, which is intended to mea-
sure the total dislocation density combining both SSDs and GNDs. With the absence of plastic strain
gradients, Ep reduces to the local effective plastic strain p. Hence, the authors believe that for a proper con-
stitutive description at small length scales, the internal power and the Helmholtz free energy should not in-
clude only the effects of ep and p but should also include the effects of rep and $p. Although these
variables have a common origin in dislocation storage and motion, they will be treated independent of each
other. This gives different physical interpretations that guide one to different evolution equations and allowing
one to computationally introduce the influence of one scale on the other (e.g. the effect of mesoscale on mac-
roscale). For example dislocation interactions are observed on a mesolevel with a length scale 0.1–10 lm
affecting strongly the material behavior on the macrolevel with a length scale P100 lm. However, those vari-
ables are considered here mathematically related to their local counterparts and, therefore, special care must
be taken to properly account for their coupling.
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Some authors have considered in their variational formation only the gradient of the plastic strain tensor,
rep, and others have considered only the gradient of the effective plastic strain, $p. But, to the authors’ best
knowledge, no one has really considered the effect of both rep and $p in the variational formulation. For
example, Shizawa and Zbib (1999), Mentzel and Steinmann (2000), Gao et al. (1999), Fleck and Hutchinson
(2001), Gurtin (2003, 2004), Gurtin and Anand (2005), and Gudmundson (2004) have developed gradient the-
ories that allow dependences on rep only. However, the theories of Fleck and Hutchinson (2001) and Gao
et al. (1999) introduce gradients in the plastic strain that only affect the isotropic hardening part with no kine-
matic hardening. The pioneering continuum gradient plasticity theories of Gurtin (2003, 2004) and Gurtin and
Anand (2005), do not incorporate $p in the principle of virtual power, but is incorporated in the functional
dependence of the Helmholtz free energy and as a constitutive assumption. Mühlhaus and Aifantis (1991),
Polizzotto and Borino (1998), Acharya and Bassani (2000), Liebe and Steinmann (2001), Voyiadjis and
Abu Al-Rub (2004), and Abu Al-Rub and Voyiadjis (2006, in press) have developed gradient theories that
allow dependences on $p such that only the isotropic hardening part is affected by the presence of these gra-
dients. Voyiadjis et al. (2001, 2003, 2004) have introduced first and second order gradients in both isotropic
and kinematic hardenings. However, the kinematic hardening is introduced through an arbitrary flux variable
and not the plastic strain. In this work both rep and $p enter the definitions of the internal virtual power and
the Helmholtz free energy. Therefore, one can anticipate that the conjugate force of rep is the non-local back-
stress while the conjugate force of $p is the non-local drag stress. This will be shown in the following sections
of this paper.

The formulation of a continuum-based plasticity model requires the satisfaction of the axioms of equilib-
rium and thermodynamics. The following sections present the principle of virtual power and the fundamental
statements of irreversible thermodynamics that are commonly used in the mathematical modeling of the mate-
rial mechanical behavior.

3.1. Principle of virtual power: macroscopic and microscopic force balances

The principle of virtual power is the assertion that, given any sub-body C, the virtual power expended on C
by materials or bodies exterior to C (i.e. external power) be equal to the virtual power expended within C (i.e.
internal power). Let n denotes the outward unit normal to oC. The external expenditure of power is assumed
to arise from a macroscopic body force b, a macroscopic surface traction t, the microtraction stress tensor con-
jugate to _ep, and the microtraction force associated with the history plasticity variable _p. One, therefore, can
write the external virtual power in the following form:
P ext ¼
Z

C
bidmi dV þ

Z
oC

tidmi dA�
Z

C
q_midmi dV þ

Z
oC

mijd_ep
ij dAþ

Z
oC

qd _p dA ð30Þ
The kinematical fields dm; d_ep, and d _p are considered here as virtual, where d is the variation parameter, q is the
mass density, m is the velocity vector, and _v is the acceleration vector. The tensor m is the microtraction stress
tensor conjugate to ep, defined for each unit vector n normal on the boundary oC of C. The scalar q is the
microtraction force associated with the effective plastic strain variable, p. The micro-stresses q and m are pre-
cisely those introduced, respectively, by Fleck and Hutchinson (2001) as a conjugate to $p and Gurtin [e.g.
Gurtin (2003, 2004) and Gurtin and Anand (2005)] as a conjugate to rep in their representation of a varia-
tional principle governing the one-non-local-parameter theory. Therefore, the first three integrals in Eq.
(30) constitute the macroscopic power expenditure, while the last two terms constitute the microscopic power
expenditure. Moreover, since plastic deformation, accommodated by dislocation generation and motion, is
affected by interfaces, the last two integrals result in higher-order boundary conditions generally consistent
with the framework of a gradient-type theory. These extra boundary conditions need to be imposed at external
and internal boundary surfaces or interfaces separating different constituents as is shown later in Section 3.4.

The external power is balanced by an internal expenditure of power characterized by an elastic stress r

defined over C for all time, the backstress X associated with kinematic hardening, and the drag-stress R asso-
ciated with isotropic hardening. However, since the goal of this paper is a theory that allows for gradients of
the plastic strain and effective plastic strain, one also considers power expenditures associated with kinematic
variables rep and $p. One, therefore, assume that additional power is expended internally by the higher-order
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microstress S conjugate to rep, and the higher-order microforce vector Q conjugate to $p. Specifically, the
internal virtual power is assumed to have the following form:
P int ¼
Z

C
rijd_ee

ij þ X ijd_ep
ij þ Rd _p þ Sijkd_ep

ij;k þ Qkd _p;k
� �

dV ð31Þ
and to balance Pext, Eq. (30), in the sense that
P ext ¼ P int ð32Þ
The first three terms in Eq. (31) constitutes the definition of the local internal virtual power in the mathe-
matical definition of standard plasticity theory. The second term represents the internal power generated by
the backstress X (or the residual-stress) attributed to kinematic hardening in order to introduce anisotropic
effects. A kinematic variable which is often used is the plastic strain itself, ep, as for example, in Prager’s hard-
ening model (linear kinematic hardening). However, a more general flux tensor associated with backstress may
be assumed (Voyiadjis et al., 2001, 2003, 2004). The third term in Eq. (31) represents the internal power gen-
erated by the drag-stress R which causes isotropic hardening. The last two terms in Eq. (31) are meant to take
into account the large spatial variations in ep at small length scales. The first term represents the internal power
generated by the non-local backstress S such that it introduces additional kinematic hardening through a non-
vanishing net Burgers vector. The third-order tensor S also follows precisely that introduced by Gurtin (2000,
2002, 2003, 2004) in his thermodynamics of one-parameter theory rep. The last term in Eq. (31) represents the
internal power generated by the non-local drag vector Q which is meant to account for the additional isotropic
hardening from the accumulation of GNDs. This may give satisfactory consideration of the large variations in
plasticity defects at the micro-scale.

Eq. (31) is based on the concepts that the power expended by each kinematical field be expressible in terms
of an associated force system consistent with its own balance. However, these kinematical fields are no longer
independent and, therefore, special care is taken in the following in order to properly account for their cou-
pling. Moreover, it is noteworthy that one might argue that the above energetic balance might best be char-
acterized through a dependence of Pint on the (scalar) accumulation of the plastic strain p (internal history
variable) and not on the plastic strain itself ep. But the effects of the two variables are different: a dependence
of Pint on ep gives rise to kinematic hardening; while a dependence of Pint on p gives rise to isotropic hardening.
Similar argument applies to rep and $p.

Now substituting the relation _ee ¼ _e� _ep, and Eqs. (24)3 and (25) into Eq. (31) along with
d _p ¼ dð_ep
ijN ijÞ ¼ N ijd_ep

ij þ _ep
ijdNij and d _p;k ¼ dð_ep

ij;kN ijÞ ¼ Nijd_ep
ij;k þ _ep

ij;kdN ij ð33Þ
yields
P ¼
Z

C
½rijd_eij � ðsij � X ij � RN ijÞd_ep

ij þ ðSijk þ QkNijÞd_ep
ij;k þ ðR_ep

ij þ Qk _ep
ij;kÞdNij�dV ð34Þ
where due to plastic incompressibility, one can easily prove that r : _e ¼ s : _e where sij ¼ rij � 1
3
rkkdij is the

deviatoric component of the Cauchy stress tensor r. By applying the divergence theorem, one can rewrite
Eq. (34) as follows:
P int ¼ �
Z

C
rij;jdmi dV �

Z
C

sij� X ij þ Sijk;k þ QkN ij;k � ðR� Qk;kÞN ij
� �

d_ep
ij dV

þ
Z

C
ðR_ep

ij þ Qk _ep
ij;kÞdNij dV þ

Z
oC

rijnjdmi dAþ
Z

oC
Sijk þ QkN ij

� �
nkd_ep

ij dA ð35Þ
Moreover, Eq. (30) can be rewritten by substituting Eq. (24)3 as
P ext ¼
Z

C
ðbi � q _miÞdmi dV þ

Z
oC

tidmi dAþ
Z

oC
ðmij þ qNijÞd_ep

ij dAþ
Z

oC
q_ep

ijdNij dA ð36Þ
By applying the axiom of equilibrium of the principle of virtual power to the region C, Eq. (32), one obtains
the following equilibrium equation:
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Z
C
ðrij;j þ bi � q _miÞdmi dV þ

Z
oC
ðti � rijnjÞdmi dAþ

Z
oC
ðmij þ qNijÞ � ðSijk þ QkNijÞnk

� �
d_ep

ij dA

þ
Z

C
sij � X ij þ Sijk;k þ QkN ij;k � ðR� Qk;kÞN ij

� �
d_ep

ij dV �
Z

C
ðR_ep

ij þ Qk _ep
ij;kÞdNij dV

þ
Z

oC
q_ep

ijdN ij dA ¼ 0 ð37Þ
However, similar to the result in Eq. (26), one can easily show by operating on the identity NijNij = 1, Eq.
(24)1, by d along with Eq. (23)1 the following:
_ep
ijdNij ¼ 0 ð38Þ
By taking the gradient of the above equation, one can write
_ep
ijdNij;k ¼ �_ep

ij;kdNij ð39Þ
Moreover, operating on Eq. (26) by d gives
_ep
ijdNij;k ¼ �N ij;kd_ep

ij ð40Þ
Comparing Eqs. (39) and (40) yields the following useful result:
_ep
ij;kdNij ¼ Nij;kd_ep

ij ð41Þ
Now substituting the results in Eqs. (38) and (41) into the virtual power balance, Eq. (37), yields the following
expression:
Z

C
ðrij;j þ bi � q _miÞdmi dV þ

Z
rC
ðti � rijnjÞdmi dAþ

Z
C
½sij � X ij þ Sijk;k � ðR� Qk;kÞNij�d_ep

ij dV

þ
Z

oC
ðmij þ qN ijÞ � ðSijk þ QkNijÞnk

� �
d_ep

ij dA ¼ 0 ð42Þ
The fields C, dv, and d_e may be arbitrarily specified if and only if
rij;j þ bi ¼ q _mi ðmacroforce balanceÞ ð43Þ
ti ¼ rijnj ðmacrotraction conditionÞ ð44Þ
sij � X ij þ Sijk;k � ðR� Qk;kÞNij ¼ 0 ðnon-local microforce balanceÞ ð45Þ
~mij ¼ ðSijk þ QkNijÞnkðmicrotraction conditionÞ ð46Þ
such that ~m ¼ mþ qN. Eq. (43) expresses the local static or dynamic equilibrium or the macroforce balance
according to the notion of Gurtin (2003). Eq. (44) defines the stress vector as the surface density of the forces
introduced. It shows that r is really the Cauchy stress tensor, which is a second-order symmetric tensor. It
also provides the local macrotraction boundary conditions on forces if the axiom of equilibrium of virtual
power is applied to the whole region under consideration as opposed to arbitrarily sub-regions. However,
one can view the microforce balance in Eq. (45) as the plasticity non-local yield condition, which is demon-
strated in the next section, and the microtraction condition in Eq. (46) as a higher-order condition (or inter-
nal boundary condition) augmented by the interaction of dislocations across interfaces (Gurtin, 2003;
Gudmundson, 2004).

It is noteworthy to mention that since ~m ¼ mþ qN, one may assume that the microtraction conditions, Eq.
(46), can be rewritten using two separate conditions such that
mij ¼ Sijknk; q ¼ Qknk ð47Þ

where the former imposes constraints on the flow of dislocations through interfaces, while the later imposes
constraints on the dislocation pileups at interfaces. However, both _ep and _p are depended and related to each
other through Eq. (24)3. Therefore, at this stage it appears that Eq. (46) is more appropriate. This topic will be
thoroughly investigated in a future work.
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3.2. Non-local yield criterion

In the following it will be shown that the microforce balance presented in Eq. (45) is nothing more than the
non-local yield condition.

By taking the Euclidean norm kk of Eq. (45), one can write
ksij � X ij þ Sijk;kk � kR� Qk;kkkNijk ¼ 0 ð48Þ
where N is collinear with s � X + divS. Moreover, since kR � Qk,kk = R � Qk,k and kNijk = 1, one can then re-
write the above expression as the non-local yield criterion or the non-local plasticity loading surface f such that
f ¼ sij � X ij þ Sijk;k

�� ��� Rþ Qk;k ¼ 0 ð49Þ
It is obvious that Eq. (49) represents a sphere in deviatoric stress-space of radius R � div Q centered at
X � divS. One can also notice that the higher-order stress divS is a back-stress quantity giving rise to addi-
tional kinematic hardening, while the microstress divQ is giving rise to additional isotropic hardening.

Since Eq. (49) implies that N is parallel to s � X + divS, one can, therefore, express the direction of plastic
strain, N, as follows:
Nij ¼
sij � X ij þ Sijk;k

ksmn � X mn þ Smnp;pk
ð50Þ
Or equivalently, one can rewrite Eq. (50) from Eq. (49) as follows:
Nij ¼
sij � X ij þ Sijk;k

R� Qk;k

ð51Þ
Substituting Eq. (23)2 into the above expression, one can easily write the following expression for the plasticity
flow rule:
_ep
ij ¼ _p

sij � X ij þ Sijk;k

R� Qk;k

ð52Þ
or equivalently, the flow rule in Eq. (52) can be expressed from Eq. (50) as follows:
_ep
ij ¼ _p

sij � X ij þ Sijk;k

ksmn � X mn þ Smnp;pk
ð53Þ
Therefore, one can easily proof that the plasticity flow rule can be written as
_ep
ij ¼ _p

of
orij
¼ � _p

of
oX ij

¼ _p
of

oSijk;k
ð54Þ
such that
Nij ¼
of
orij
¼ � of

oX ij
¼ of

oSijk;k
ð55Þ
Therefore, the flow rule in Eq. (54) asserts that the flow direction N in Eq. (55) is normal to the yield surface
and directed outward from the yield surface. Moreover, if the higher-order gradients are neglected, one can
easily retrieve from Eqs. (49), (54) and (55), respectively, the classical yield criterion, flow rule, and flow
direction.

A direct consequence of the above formalism is that the non-local yield function, Eq. (49) can be derived
from the principle of virtual power.

3.3. Non-local Clausius–Duhem inequality

Utilizing the derived microforce balance, Eq. (45), and the microtraction condition, Eq. (46), into Eq. (35),
and replacing the virtual quantities by the actual fields, one can rewrite the expression of the internal power
defined in Eq. (31) as follows:
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P int ¼
Z

C
rij _eij dV þ

Z
oC

~mij _e
p
ij dA ð56Þ
Comparing the above equation with its corresponding local expression in Green and Naghdi (1971), implies
that the long-range (non-local) energy interactions can be of non-vanishing within the plastic zone, which is
represented by the second term in Eq. (56). Hence, according to the notion of Eringen and Edelen (1972), the
energy term

R
oC

~mij _e
p
ij dA is called as the non-locality energy residual that results from microstructural interac-

tions between the material points in the active plastic zone and at interfaces. Therefore, one can define the
density of the non-locality energy residual, R, as follows:
Z

C
RdV ¼

Z
oC

~mij _e
p
ij dA ¼

Z
oC
ðSijk þ QkNijÞnk _ep

ij dA ð57Þ
By applying the divergence theorem to Eq. (57) along with Eq. (46), one obtains
Z
C

RdV ¼
Z

C
½Zijk _ep

ij�;k dV ð58Þ
where

Zijk ¼ Sijk þ QkNij ð59Þ
such that R is given by
R ¼ ½Zijk _ep
ij�;k ¼ Zijk;k _ep

ij þ Zijk _ep
ij;k ð60Þ
where R 6¼ 0 in Cp, but R ¼ 0 out of Cp or for a homogeneous plastic deformation (i.e. R ¼ 0 in the absence of
plastic strain gradients).

One considers here a purely mechanical theory (isothermal conditions are assumed) based on the require-
ment that the rate of change in the total free energy should be less than or equal to the power done by external
forces (Gurtin, 2000). If one denotes qW as the specific free energy, this requirement takes the form of a free
energy inequality
�R
C qWdV

6 P ext ð61Þ
From the conservation of mass law, one can write dR
C

qW dV
¼
R

C q _WdV . By substituting Eqs. (56) and (57) into

Eq. (61), one obtains the following thermodynamic restriction in a point wise form:
rij _eij � q _Wþ R P 0 ð62Þ

The inequality in Eq. (62) is termed here as the non-local Clausius–Duhem inequality differing from its classical
counterpart only in the presence of R. This inequality holds everywhere in C, but R ¼ 0 at material points in
the elastic zone. Moreover, it can be noted from Eq. (60) that for a homogeneous plastic strain distribution
R ¼ 0, one retains the classical Clausius–Duhem inequality.

The non-local Clausius–Duhem inequality, Eq. (62), can be recognized to be substantially coincident with
the analogous inequality presented by Polizzotto and Borino (1998). This result credits the proposed frame-
work as a valid approach to model non-local plasticity. Therefore, for more details on the nature of the non-
locality residual R the reader is referred to the work by Polizzotto and Borino (1998). However, the framework
used here to evaluate the non-locality residual R is more thermodynamically based than that used by Polizz-
otto and Borino (1998).

In Section 3.5 the non-local Clausius–Duhem inequality in Eq. (62) will be employed for deriving the ther-
modynamic restrictions upon the inherent constitutive equations, to be satisfied for any admissible deforma-
tion mechanism.

3.4. Microlevel plastic boundary conditions

Polizzotto (e.g. Polizzotto and Borino, 1998; Polizzotto, 2003) assumed that the non-locality residual in Eq.
(57) is equal to zero and called it as the insulation condition meaning that non-local energy is not allowed to
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flow from any point in C to the exterior of the body. Therefore, if one neglects the interior surface energy that
results from dislocation interactions at the surface/interface boundaries (e.g. internal boundaries at inclu-
sions), the insulation condition of Polizzotto can be expressed as
Z

C
RdV ¼ 0 ð63Þ
Furthermore, one retrieves the classical definition of the internal power if the non-locality energy residual is
simply set zero in Eq. (56). Therefore, from the above tow arguments, one may require the application of inter-
nal micro-boundary conditions in a pointwise format if there is no plastic flow across the interfaces, which re-
sults in a null expenditure of micro-power in the sense that:
~mij _e
p
ij ¼ 0 on oCp ð64Þ
where oCp � oC is the plastic boundary. The above equation renders two conditions according to a split of the
plastic subdomain boundary into external and internal parts, oCp ¼ oCp

int [ oCp
ext:

(a) Microplastic-clamped boundary condition that is imposed on the internal plastic boundary oCp
int such

that
_ep
ij ¼ 0 on oCp

int ð65Þ

and gives the so-called continuity boundary condition of Dirichlet type and is meant to characterize, for
example, microscopic behavior at the boundary of a metallic film perfectly bonded to an elastic substrate
or metallic matrix perfectly bonded to an elastic inclusion. This condition arises from the consideration
that in general the stress rate _r is continuous across oCp

int and thus the related elastic strain rate, _ee, and
plastic strain rate, _ep, must be continuous. Therefore, this boundary condition places a constraint on the
plastic flow and could characterize the dislocation blocking at the interface. Moreover, oCp

int could char-
acterize the movable elastic-plastic boundary.
(b) Microtraction-free boundary condition that is imposed on the external plastic boundary oCp
ext � oC
~mij ¼ 0 on oCp
ext ð66Þ

and gives the so-called Neumann type boundary which is the simplest form of Eq. (46) and assumes that
the microtractions ~m vanish at the external surfaces oCp

ext ¼ oCp
T

oC (i.e. unmovable external surfaces).
This condition is meant to characterize, for example, the free surface of a void in a material or the free
surfaces of nano-size structural systems. Eq. (66) places no constraint on the plastic flow and could char-
acterize free dislocation movements across the boundaries. Moreover, in case of external surface trac-
tions the macrotractions t in Eq. (44) has a value whereas the microtractions ~m could vanish.
The above null boundary conditions for microscopically hard and microscopically free portions of oCp have
also been introduced by Gurtin (e.g. Gurtin, 2000, 2002, 2003, 2004) and Fleck and Hutchinson (2001). How-
ever, these conditions are very difficult to be satisfied in reality, particularly, for large surface-to-volume ratios
which the gradient plasticity theories are mainly intended to characterize. Therefore, these boundary condi-
tions ignore the non-locality residual

R
C R dV at free surfaces and interfaces. However, surface energy, which

can be characterized by the non-locality energy residual as shown next, is significant and cannot be ignored
when the surface-to-volume ratio becomes large enough. At the micron and higher length scales, the sur-
face-to-volume ratio is small enough and can be neglected and indeed the above boundary conditions hold
true. However, for submicron and smaller length scales the surface-to-volume ratio is appreciable. Here, ~m
is meant to be the driving force at the material internal and external boundaries such that for an intermediate
(i.e. not free and not clamped) kind of microscopic boundary condition, one has ~m 6¼ 0 on oCp

ext and _e 6¼ 0 on
oCp

int. Therefore, microtraction stress ~m can be interpreted as the surface stress at free or interface surfaces
which is conjugate to the surface plastic strain. The physical dimensions of the components of ~m are force/
length. This aspect of the gradient theory could be the appropriate approach to extend its applicability beyond
the submicron scale size effects to the nano scale size effects.
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One now considers the case if the surface oCp is an interface with an elastic or rigid surface, where dislo-
cations pileup, ~m can be interpreted as the conjugate force to ep at the interface (e.g. Gudmundson, 2004;
Sharma and Ganti, 2004; Dingrevillea et al., 2005). If this situation rises, it can be modeled by a surface energy
that depends on the plastic strain state at the interface of the plastically deforming material. This surface
energy accounts for energy due to interfaces between distinct phase regions. The microtraction stress ~m can
then be related to the surface energy as follows (e.g. Gudmundson, 2004; Sharma and Ganti, 2004; Dingre-
villea et al., 2005):
~mij ¼
ouðepÞ
oepðsÞ

ij

on oCp ð67Þ
where u is the surface energy per unit surface area, which is a plastic deformation-dependent, and ep(S) is the
surface plastic strain. Continuity of the strain field requires ep = ep(S)joC at the interface. The components of
ep(S) are the extensional and shear plastic strains with respect to a locally rectangular coordinate system de-
fined in the tangent plane of the surface at the material point of interest. For u = 0, one obtains the micro-
free boundary in Eq. (66); while for u!1 the micro-clamped boundary condition in Eq. (65) is obtained.
One, therefore, obtains the total strain energy stored at the interface in terms of the non-locality residual R

as follows:
Z
oC

udA ¼
Z

oC

Z epðsÞ

0

~mijðepðsÞÞdep
ij

" #
dA ¼

Z
C

Z t

0

Rdt
� 	

dV P 0 ð68Þ
where the fact that the surface stress ~m is a function of the surface plastic strain, ep(S), is explicitly indicated.
The surface energy is positive definite. Moreover, if R is neglected, as it is the case for most of current gradient
plasticity theories, then the surface energy at interfaces is also neglected. For a given material surface, u can be
measured experimentally or computed using atomistic simulations (e.g. Diao et al., 2004). The interface con-
tributions to the thermodynamic quantities ~m and u are obtained as the excess over the classical thermody-
namic values that would be obtained if the strain gradients are absent. It should be mentioned that an
elegant mathematical theory incorporating surface stress and interfacial energy into the continuum mechanics
formulation was proposed in the 1970s by Gurtin (e.g. Gurtin and Murdoch, 1978; Gurtin et al., 1998).

In case of free surfaces, the higher-order gradient theories (e.g. Fleck and Hutchinson, 2001; Gurtin, 2004;
Gudmundson, 2004) assume that the microtraction force ~m vanishes analogous to vanishing macrotraction t
at free surfaces. However, like interfaces, free surfaces can also be characterized by a surface energy per unit
area. Therefore, another possible interpretation of ~m could be the consideration of initial higher-order surface
stresses at free surfaces (i.e. ~m ¼ ~mo) which could exist even when the surface plastic strain ep(S) is absent.
These higher-order stresses could be more dominant in structures with high surface-to-volume aspect ratios
as in the case of nanosystems. Atomistic simulations show that free surfaces could induce lattice distortion
in nanosystems (e.g. Diao et al., 2004). Han et al. (2006) performed discrete dislocation dynamics simulations
and found out that free surfaces induce size effects. Furthermore, free surfaces in nanosystems can be sources
for development of defects and its propagation towards the interior because of the existence of those higher-
order stresses. Therefore, non-vanishing gradients could be encountered at free surfaces even if no prescribed
macroscopic tractions t are imposed at these surfaces. Free surfaces of a material confined in a small volume
can strongly affect the size-dependent plasticity. Therefore, imposing non-vanishing microtraction boundary
conditions at the free surfaces could result in a size effect under uniaxial loading. The expression for the micro-
traction stress ~m in Eq. (67) can then be modified to incorporate surface and/or interface energies as follows:
~mij ¼ ~mij0
þ ouðepÞ

oðsÞep
ij

on oCp ð69Þ
where u can be interpreted now as the energy density of a free surface or an interface (surface/interfacial en-
ergy) and is distinct from the bulk deformation-dependent energy. ~mij0

¼ sodij is the initial surface stress with
so representing the deformation-independent surface tension. Therefore, ~m can be interpreted as the surface
tension at free boundaries. The presence of so could cause the material to deform plastically before the appli-
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cation of macroscopic forces. The effect of so has not been incorporated in the formulation of Gudmundson
(2004).

3.5. Non-local state variables

The hardening in plasticity is introduced as hidden independent internal state variables in the thermody-
namic state potential. The Helmholtz free energy is considered as the thermodynamic state potential depend-
ing on both observable and internal state variables. However, before giving its definition, a choice must be
made with respect to the nature of the state variables. Here, one chooses a form of this potential that depends
on local and non-local state variables: (a) local variables are the elastic strain, ee, the plastic strain, ep, and the
effective plastic strain p; (b) non-local variables are the plastic strain gradient rep and the gradient of the effec-
tive plastic strain $p such that the Helmholtz free energy can be a function of:
W ¼ Ŵðee
ij; e

p
ij; p; e

p
ij;k; p;kÞ ð70Þ
Therefore, to the present authors opinion, the non-local variables rep and $p must appear in the specific free
energy W if they do contribute to the internal power expression, Eq. (31).

Assuming a separable material, i.e. no coupling between the elastic and plastic free energies (Gurtin, 2003),
one can rewrite the Helmholtz free energy potential as
W ¼ Weðee
ijÞ þWpðep

ij; p; e
p
ij;k; p;kÞ ð71Þ
Taking the time derivative of Eq. (71) with respect to its internal state variables yields
_W ¼ oWe

oee
ij

_ee
ij þ

oWp

oep
ij

_ep
ij þ

oWp

oP
_p þ oWp

oep
ij;k

_ep
ij;k þ

oWp

op;k
_p;k ð72Þ
Making use of Eqs. (24)3 and (25) in Eq. (72), one gets
_W ¼ oWe

oee
ij

_ee
ij þ

oWp

oep
ij
þ oWp

op
Nij

 !
_ep

ij þ
oWp

oep
ij;k

þ oWp

op;k
N ij

" #
_ep

ij;k ð73Þ
One can now apply the non-local Clausius–Duhem inequality from Eqs. (62) and (60) to the present case along
with the expanded time derivative in Eq. (73) such that
rij � q
oWe

oee
ij

 !
_ee

ij þ sij � q
oWp

oep
ij
� q

oWp

op
Nij

 !
_ep
ij � q

oWp

oep
ij;k

þ q
oWp

op;k
N ij

" #
_ep

ij;k þ R P 0 ð74Þ
A classical hypothesis permits one to cancel some terms in this inequality independently from which the fol-
lowing thermodynamic state laws are obtained
rij ¼ q
oWe

oee
ij

ð75Þ

J ij ¼ sij � q
oWp

oep
ij
� q

oWp

op
Nij ð76Þ

Zijk ¼ �q
oWp

oep
ij;k

þ q
oWp

op;k
N ij ð77Þ
One can also define the local conjugate forces X and R as
X ij ¼ q
oWp

oep
ij
; R ¼ cþ q

oWp

op
ð78Þ
and the non-local conjugate forces S and Q as
Sijk ¼ q
oW
oep

ij;k

; Qk ¼ q
oW
op;k

ð79Þ
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It is worthy to mention that from Eq. (78)2 it appears that the isotropic hardening function R is the sum of a
dissipative term c > 0 and an energetic (or conservative) term qoW/op. The conjugate force R has a hardening
or softening effect as qoW/op > 0 or <0, respectively. Moreover, the dissipation modulus c implicitly incorpo-
rates local dissipative effects from R and X and non-local dissipative effects from S and Q, which are summed
under R. This is shown next.

By substituting Eqs. (78) into Eq. (76), one obtains
J ij ¼ sij � X ij � RN ij|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
local microforce balance

þcN ij ð80Þ
However, in the absence of strain gradients, the non-local microforce balance, Eq. (45), reduces to
ðsij � X ijÞ � RN ij ¼ 0() ksij � X ijk � R ¼ 0 ð81Þ
where Eq. (81)2 defines the local yield surface. Therefore, Eq. (80) can be rewritten as
J ij ¼ cN ij () kJ ijk ¼ c ð82Þ
where Eq. (82)1 implies that N is collinear with J for local plasticity such that c is a local quantity in this case.
Substituting Eqs. (81)2 and (82)2 into Eq. (82)1 along with Eq. (23)2, one obtains the local plastic flow rule in
the absence of strain gradients as follows:
_ep
ij ¼ _p

J ij

kJ ijk
ð83Þ
or equivalently from Eq. (81)1 as
_ep
ij ¼ _p

sij � X ij

R
ð84Þ
The above equation agrees well with the normality flow rule of classical plasticity.

3.6. Non-local plastic flow rule

By substituting Eqs. (79) into Eq. (77), one obtains Eq. (59). Furthermore, substituting Eqs. (75)–(77) into
Eq. (74) reduces the non-local Clausius–Duhem inequality as follows:
P ¼ J ij _e
p
ij � Zijk _ep

ij;k þ R P 0 ð85Þ
where P is the non-local dissipation energy per unit volume.
By making use of R, Eq. (60), into Eq. (85), one can express P in a linear form in terms of the driving flux

_ep, such that
P ¼ bJ ij _e
p
ij P 0 ð86Þ
where bJ denotes the unknown total quasi-non-local thermodynamic force and is obtained as
bJ ij ¼ J ij þ Zijk;k in Cp ð87Þ
where R has disappeared from P in Eq. (85), but its non-locality has been replaced by div Z. Moreover, Eq.
(86) proves that the Onsager reciprocity principle (Malvern, 1969) can be assumed to hold in the case of non-
local material behavior (Eringen and Edelen, 1972; Polizzotto and Borino, 1998). In the absence of strain gra-
dients, bJ degenerates to its local part J. Hence, it is obvious that Eq. (87), after substituting Eqs. (76) and (77),
identifies bJ and, therefore, it is the force that must be introduced into the non-local evolution equations as the
pertinent hardening/softening driving force. bJ is a quasi-non-local force since it is decomposed into a local
part, J, and a non-local part, div Z.

By substituting Eqs. (76)–(79) into Eq. (87), one can write
Ĵ ij ¼ sij � X ij þ Sijk;k � ðR� Qk;kÞNij|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
non-local microforce balance

þcN ij ð88Þ
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Substituting the non-local microforce balance from, Eq. (45), into Eq. (88) yields
Ĵ ij ¼ cNij () Ĵ ij

�� �� ¼ c ð89Þ
where N is collinear with bJ such that c is a non-local quantity in this case. Therefore, one can express the plas-
tic flow direction N form Eqs. (89) and (87) in terms of the quasi-non-local conjugate force bJ as follows:
Nij ¼
bJ ij

kbJ mnk
¼ J ij þ Zijk;k

kJ mn þ Zmnp;pk
ð90Þ
This means that the plastic flow is governed by the quasi-non-local force bJ. By substituting Eqs. (76) and (77)
into the above expression, then one obtains the non-local flow rule in Eq. (50). Thus, the essential change in
the classical plasticity theory is that here the size of the yield surface depends on the gradient of the effective
plastic strain $p, while the center of the yield surface (backstress) depends on the plastic strain gradient $ep.

Substituting the expression for _ep from Eq. (24)3 along with Eqs. (89) into Eq. (86) gives
c ¼ P
_p

P 0 for _p > 0 ð91Þ
where c is interpreted, according to the notion of Gurtin (2000), as the non-local dissipation modulus. Further,
one obtains c = 0 for _p ¼ 0.

3.7. The non-local maximum dissipation principle

The principle of maximum plastic dissipation (or maximum entropy production) states that the actual state
of the thermodynamic forces is that which maximizes the dissipation function over all other possible admis-
sible states (or the closed system should approach its final state of maximal entropy on the shortest possible
path). This principle is central in the mathematical formulation of plasticity theories (see e.g. Duvaut and
Lions, 1972).

As one observes from the previous discussion, the thermodynamic potential W allows one to write rela-
tions between internal variables and the corresponding conjugate forces. However, in order to describe the
dissipation process the evolution of the internal variables is needed, which can be obtained through the use
of the generalized normality rule of thermodynamics which is a consequence of the maximum dissipation
principle. Eq. (86) expresses the plastic dissipation density, P, through the local evolution of _ep and the
related non-local thermodynamic force bJ. Therefore, in case of associative plasticity, as it is the case here,
a consistent way to establish the plastic evolution laws is by making use of the maximum plastic dissipation
principle. In this regard the evolution laws for _ep; _p;rep, and $p can be obtained by utilizing the calculus of
function of several variables with the Lagrange multiplier, _k, and subjected to the microscopic force balance
f = 0 from Eq. (49). Formulating this principle, the objective function X can be constructed in the following
form:
X ¼ �Pþ _kf ð92Þ

The following conditions are used to maximize the objective function, X:
oX

oĴ ij

¼ 0 ) oX
orij
¼ 0;

oX
oX ij

¼ 0;
oX

oSijk;k
¼ 0;

oX
oR
¼ 0;

oX
oQkk

¼ 0 ð93Þ
By making use of Eq. (86) into Eq. (92) along with Eqs. (59), (76), (78) and (87), the plastic flow rule, _ep, can
then be obtained from any of the conditions in Eqs. (93)1–4, such that
_ep
ij ¼ _k

of

oĴ ij

)¼ _ep
ij ¼ _k

of
orij
¼ � _k

of
oX ij

¼ _k
of
oSij;k

ð94Þ
which agrees with the classical assumption that the plastic flow direction N is governed by the Cauchy stress r.
However, Eq. (94) suggests that similarly N is governed by the non-local microstress divS as presented in Eq.
(55).
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The evolution of _p can be obtained from the last two expressions in Eq. (93) along with Eq. (49) such that
_p ¼ � _k
of
oR
¼ _k

of
oQk;k

¼ _k ð95Þ
where _k is the plastic multiplier which can be determined by the non-local consistency condition
f 6 0; _k P 0; _kf ¼ 0 and _k _f ¼ 0 ð96Þ

It can be noted that the whole problem of modeling the plasticity phenomenon lies in the determination of

the analytical expressions for the Helmholtz free energy function W and its identification from experiments.
Several examples are presented in the following section.

It is noteworthy that Gurtin and Anand (2005) and Anand et al. (2005) have argued that in order to be
able to capture strengthening and the increase in rates of strain hardening accompanied by the reduction in
size, one should adopt two material length scales: dissipative and energetic length scales, respectively. The
energetic length scale is associated with the gradient of plastic strain tensor, $ep, whereas the dissipative
length scale is associated with the gradient of the effective plastic strain, $p. However, in Gurtin’s analysis
$p does not directly enter the definition of the internal virtual power but as a constitutive assumption
through a power-law (see Section 6 of Gurtin and Anand, 2005). Therefore, the current formulation differs
from Gurtin’s work in that both $ep and $p along with their local counterparts, ep and p, enter the def-
initions of the internal virtual power, Eq. (31). By doing so the non-local form of the von-Mises yield
criterion is obtained directly from the principle of virtual power without further constitutive assumptions
as shown in Section 3.2. Therefore, by setting R = Qk,k = 0 in the current derived microscopic force bal-
ance, Eq. (45), and adopting the same constitutive relations for the microstresses X and S as presented in
Gurtin and Anand (2005) and Anand et al. (2005) one obtains the exact expressions for the microforce
balance and the non-local plastic flow rule as derived by Gurtin. Moreover, the proposed model differs
from Gurtin’s analysis in that definite values for the microscopic boundary conditions are obtained
depending on the level of surface/interface energy, whereas null microscopic boundary conditions are
assumed in the work of Gurtin, which are very difficult to be satisfied in practice. Finally, the current
thermodynamic framework preserves the classical structure of local plasticity theory. This is not inline
with Gurtin (2000, 2003) and Gudmundson (2004) who argued that the plastic flow direction N is gov-
erned by the microstress S and not the Cauchy stress r. The proposed framework suggests that N is gov-
erned by r or equivalently by divS.

4. Gradient-dependence of the Helmholtz free energy

In order to develop equations amenable to the analysis and computation, one now considers examples for
the definition of the Helmholtz free energy function.

Example 1. One can assume decoupling between the elastic behavior and plasticity hardening (i.e. separable
material) such that both We and Wp that appear in Eq. (71) can be assumed to have, respectively, the following
quadratic analytical form:
qWe ¼ 1

2
ee

ijEijkle
e
kl ð97Þ

qWp ¼ 1

2
a1e

p
ije

p
ij þ

1

2
a2p2 þ 1

2
a3e

p
ij;ke

p
ij;k þ

1

2
a4p;kp;k ð98Þ
where E is the symmetric fourth-order elastic stiffness tensor and ai(i = 1-4) are material constants.
Now, one can obtain the Cauchy stress from Eqs. (75) and (97) as
rij ¼ Eijkle
e
kl ¼ Eijklðekl � ep

klÞ ð99Þ

Making use of Eqs. (23)2 and (25) 2, the local and non-local conjugate forces in Eqs. (78) and (79) can be ob-
tained, respectively, as follows:
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X ij ¼ hep
ij; R ¼ cþ hp ð100Þ

Sijk ¼ Bijmne
p
mn;k; Qk ¼ hl2p;k ð101Þ
where, for simplicity, it is assumed that a1 + a2 = h and a3 + a4 = h‘2 with h being the constant hardening
modulus, Bijmn = a3dimdjn + a4NijNmn, and c = ry coincides with the initial yield strength.

Substituting Eqs. (100) and (101) into the yield function f, Eq. (49), one can then write
f ¼ ksij þ X ij þ Sijk;kk|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
effective Von-Mises stress

� c� hp þ h‘2r2p|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
isotropic hardening function

¼ 0 ð102Þ
with
Sijk;k ¼ Bijmn;ke
p
mn;k þ Bijmne

p
mn;kk ð103Þ
where $2 designates the Laplacian operator and Bijmn,k = a4 (Nij,kNmn + NijNmn,k).

Thus this theory shows that the Laplacian of the effective plastic strain contributes to the size of the yield
surface (isotropic hardening), whereas the first-order gradient and the Laplacian of the plastic strain tensor
contribute to the movement of the center of the yield surface (kinematic hardening). It is also noteworthy that
the present formulation links hardening to the gradients of plastic strain rep and the effective plastic strain rp
and, respectively, not to $2ep and $2p, consistent with basic notions of the role of the net Burgers vector and
the geometrically necessary dislocations. Instead, $2ep and $2p emerges in the resulting field equations as a
byproduct of the more fundamental role of the plastic strain gradients.

Example 2. More complicated non-local yield functions can be obtained if one assumes non-quadratic or
anisotropic analytical expressions in the definition of the Helmholtz free energy function, Eq. (98). For
example, the invariant a3e

p
ij;ke

p
ij;k in Eq. (98) can be replaced by one or some of the following quadratic

invariants (Gurtin, 2003):
qWpðep
ij;kÞ ¼

1

2
c1e

p
ij;ke

p
ij;k þ

1

2
c2e

p
ij;ke

p
ik;j þ

1

2
c3e

p
ij;je

p
ik;k ð104Þ
where e
p
ij;ke

p
ij;k ¼ krepk2

; krepk2 � e
p
ij;ke

p
ik;j ¼ kcurlepk2, and e

p
ij;je

p
ik;k ¼ kdiv epk2 such that e

p
ij ¼ e

p
ji and e

p
kk ¼ 0.

Substituting the above expression into Eq. (79)1 yields a complicated expression for the conjugate force S as
Sijk ¼ c1e
p
ij;k þ

1

2
c2ðep

kj;j þ ep
ki;jÞ þ

1

2
c3ðep

im;mdjk þ ep
jm;mdikÞ �

1

3
ðc2 þ c3Þep

km;mdij ð105Þ
such that one can express divS as
Sijk;k ¼ c1e
p
ij þ ðc2 þ c3Þ

ep
ik;kj þ ep

jk;ki

2
�

ep
mk;kmdij

3

� �
ð106Þ
Example 3. The plasticity related component of the Helmholtz free energy can be expressed in terms of the
plastic strain gradient rep by adopting the Fleck and Hutchinson (2001) decompositions of rep into three
orthogonal components
ep
ij;k ¼

X3

m¼1

epðmÞ
ij;k ð107Þ
with
epð1Þ
ij;k ¼ epðsÞ

ijk �
1

5
ðdije

pðsÞ
kp;p þ dike

pðsÞ
jp;p þ djke

pðsÞ
ip;p Þ ð108Þ

epð2Þ
ij;k ¼

1

6
ðeikpejlm þ ejkpeilmÞep

lp;m þ 2ep
ij;k � ep

jk;i � ep
ki;j

h i
ð109Þ
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epð3Þ
ij;k ¼

1

6
ðeikpejlmep

lp;m þ ejkpeilmÞep
lp;m þ 2ep

ij;k � ep
jk;i � ep

ki;j

h i
þ 1

5
ðdije

pðsÞ
kp;p þ dike

pðsÞ
jp;p þ djke

pðsÞ
ip;p Þ ð110Þ
where dij is the Kronecker delta, eijk is the permutation tensor, and e
pðsÞ
ij;k is the fully symmetric part of e

p
ij;k,
epðsÞ
ij;k ¼

1

3
ðep

ij;k þ ep
jk;i þ ep

ki;jÞ ð111Þ
Therefore, a free energy that depends on an isotropic and quadratic form in the plastic strain gradients may be
expressed as follows (Gudmundson, 2004):
qWpðep
ij;kÞ ¼

1

2

X3

m¼1

cðmÞepðmÞ
ij;k epðmÞ

ij;k ð112Þ
Substituting the above expression into Eq. (79)1 yields the following expression for the conjugate force S
Sijk ¼
X3

m¼1

cðmÞepðmÞ
ij;k ð113Þ
such that one can express divS as
Sijk;k ¼
X3

m¼1

cðmÞepðmÞ
ij;kk ð114Þ
Example 4. For general power-law constitutive relations, one can assume the traditional power-law for the
defect free energy, Wp, such that:
qWpðEpÞ ¼ h
mþ 2

Ep

ey

� �mþ2

e2
y ð115Þ
where m > 0 is the rate-sensitivity parameter, Ep is the non-local effective plastic strain presented in Eq. (29),
and ey is the yield strain. The isotopic hardening conjugate forces can be obtained by making use of Eqs. (78)2

and (79)2, respectively, as follows:
R ¼ cþ h
Ep

ey

� �m

p; Qk ¼ h‘2 Ep

ey

� �m

p; k ð116Þ
From the above expressions one can express the yield criterion in Eq. (49) as follows:
f ¼ ksij � X ij þ Sijk;kk � c� h
Ep

ey

� �m

p þ h‘2 o

oxk

Ep

ey

� �m

p;k

� 	
¼ 0 ð117Þ
which coincides with the expression proposed by Gurtin and Anand (2005) where divS is given either by Eq.
(106) or Eq. (114). It can be noticed that the limit m! 0 gives Eq. (102).

It is noteworthy that in Gurtin and Anand (2005) and Anand et al. (2005) the higher-order stress S conju-
gate to $ep is split into an energetic part, Sen, and a dissipative part, Sdis, such that
S ¼ Sen þ Sdis
Therefore, by setting R = Qk,k = 0 in the current derived microscopic force balance, Eq. (45), one obtains the
exact form for the microforce balance as derived by Gurtin, such that:
sþ divSen ¼ X� divSdis
However, in order to obtain viscoplastic constitutive model, the following constitutive relations for the micro-
stresses, X, Sen, and Sdis, have been assumed by Gurtin and Anand (2005) and Anand et al. (2005):
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X ¼ h
_Ep

_ey

� �m
_ep

_Ep
;Sdis ¼ ‘2h

_Ep

_ey

� �mr_ep

_Ep
with Sen ¼ q oWpðrepÞ
orep , which yields the same expression as in Eq. (105). Therefore, substituting these relations in

the microscopic force balance yields the same expression for the plastic flow as presented in Gurtin and Anand
(2005) and Anand et al. (2005). In other words, one can obtain Gurtin’s formulation by neglecting the effective
plastic strain, p, and the corresponding gradient, $p, in the current model, or equivalently by setting the cor-
responding conjugate forces q, R, and Qk zero in the definitions of the external and internal virtual powers in
Eqs. (30) and (31), respectively. Furthermore, the specific forms for the plastic flow rule and plastic dissipation
as presented in Gurtin and Anand (2005) and Anand et al. (2005) can be obtained easily by adopting their
constitutive assumptions for the defect energy and the isotropic hardening function. Therefore, both Gurtin’s
analysis and the analysis presented in this work are overall equivalent when $p and p are neglected.

As presented in Section 3.4, additional boundary conditions have to be specified on the elastic-plastic inter-
face for plastic strains or higher-order stresses. Constrained plastic flow could be modeled either as a full con-
straint, i.e. ep = 0, as in Eq. (65) or no constraint, i.e. ~m ¼ 0, as in Eq. (66). However, following the ideas
presented by Gudmundson (2004), an intermediate kind of micro-boundary condition is introduced. There-
fore, the surface energy u presented in Eq. (67) that depends on the plastic strain state at the interface can
be assumed to have the following quadratic form:
u ¼ 1

2
h‘Se

pðsÞ
ij epðsÞ

ij on oCp ð118Þ
where ‘S is a microstructural length scale that is related to boundary layer thickness and characterizes the
strength of the surface/interface boundary. The microtraction stress at the boundary, ~m, can then be obtained
from Eqs. (67) and (118) as
~mij ¼ ~mij0 þ h‘Se
pðsÞ
ij on oCp ð119Þ
The microtraction stress is thus collinear with the plastic strain at the interface. If ‘S = 0 and ~m0 ¼ 0, the inter-
face would behave like a free surface and one obtains the micro-free boundary condition, Eq. (66). On the
other hand, if ‘S!1 then it would represent a condition for fully constrained dislocation movement at
the interface and one obtains the micro-clamped boundary condition, Eq. (65). The role of the deforma-
tion-independent surface stress ~mijo

¼ sodij on the predictions of size effects will be investigated in future work.
5. Applications to size effects in thin films

This section presents some recent applications of gradient plasticity to handle size effects observed in met-
als. The proposed gradient plasticity theory is now used to investigate the size dependent behavior in biaxial
loading of a plastic thin film on an elastic substrate, shear loading of a thin film fixed to a rigid substrate, and
thermal cooling of a thin film on a substrate. In the following applications, for simplicity, kinematic hardening
introduced by the conjugate forces X and S is neglected and the expression of the yield surface f in Eq. (102) is
employed.
5.1. Biaxial loading of a thin film on a substrate

A biaxially loaded isotropic elasto-plastic thin film of thickness t on a thick semi-infinite elastic substrate is
considered as shown in Fig. 1. Let x3 be the perpendicular axis to the film and x3 = 0 corresponds to the film–
substrate interface. The loading is defined by a monotonically increasing biaxial strain e0 such that e11 = e22 =
e0. A plane stress situation is assumed such that the non-vanishing stress components are
r11 ¼ r22 ¼ r0ðx3Þ ð120Þ
From the plastic incompressibility assumption and the symmetry, one can write the non-vanishing plastic
strain components as



t
x3

x1

Thin-Film

substrate

Fig. 1. An elasto-plastic thin film of thickness t on elastic substrate.
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ep
11 ¼ ep

22 ¼ �
1

2
ep

33 ¼ ep
0ðx3Þ ð121Þ
The effective plastic strain p ¼
ffiffiffiffiffiffiffiffiffi
e

p
ije

p
ij

q
and its Laplacian $2p are given as
p ¼
ffiffiffi
6
p

ep
0 and r2p ¼

ffiffiffi
6
p

ep
0;33 ð122Þ
where e
p
o;33 ¼ oep

o=ox3ox3.
The stress–strain relationship can be simply obtained from the generalized Hook’s law as
r0ðx3Þ ¼
E

ð1� mÞ ðe0 � ep
0ðx3ÞÞ ð123Þ
Substituting Eqs. (120), (122) and (123) into the yield condition, Eq. (102), yields the following ordinary dif-
ferential equation for ep

oðx3Þ:
ep
o;33 �

1

‘2
þ E

3ð1� mÞh‘2

� 	
ep

o ¼
ryffiffiffi
6
p

h‘2
� E

3ð1� mÞh‘2
eo ð124Þ
It is convenient to express the above equation in a non-dimensional form with the aid of variable substitution
(i.e. z ¼ x3=t;�ep

o ¼ ep
o=ey, and �eo ¼ eo=ey with ey = (1 � m)ry/E being the in-plane yield strain) such that
�ep
o;zz � k2�ep

o ¼ �F ð125Þ
with constant coefficients k and F are given through
k2 ¼ 1

ð‘=tÞ2
1þ E

3ð1� mÞh

� �
and F ¼ Eð�eo �

ffiffiffiffiffiffiffiffi
3=2

p
Þ

3ð1� mÞhð‘=tÞ2
ð126Þ
The micro-boundary conditions can now be utilized as presented by Eq. (119). The microtraction stress ~m
can be obtained from Eqs. (46) to (101)2 as
~m11 ¼ ~m22 ¼ �
1

2
~m33 ¼ h‘2ep

o;3 ð127Þ
It is assumed that the microtraction stress ~m vanishes at the free surface (x3 = t) such that Eq. (127) results in
the following microfree boundary condition
o�ep
o

oz
¼ 0 at z ¼ 1 ð128Þ
The boundary condition at the film–substrate interface is given from Eqs. (119) to (127) as follows:
ð‘S=‘Þ�ep
o ¼ ð‘=tÞ o�ep

o

oz
at z ¼ 0 ð129Þ
Solving the ordinary differential equation, Eq. (125), which is subjected to the boundary conditions in Eqs.
(128) and (129), one obtains a closed-form expression for �ep

oðzÞ as
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�ep
oðZÞ ¼

F

k2
1� cosh kð1� zÞ

cosh kþ d sinh k

� 	
ð130Þ
where F/k2 and d are given by
F

k2
¼ Eð�eo �

ffiffiffiffiffiffiffiffi
3=2

p
Þ

3ð1� mÞhþ E
Hð�eo �

ffiffiffiffiffiffiffiffi
3=2

p
Þ ð131Þ

d2 ¼ k2ð‘=tÞ2ð‘=‘SÞ2 ¼ ð‘=‘SÞ2 1þ E
3ð1� mÞh

� �
ð132Þ
where Hð�eo �
ffiffiffiffiffiffiffiffi
3=2

p
Þ is the Heaviside step function.

For d = 0, which corresponds to the micro-clamped boundary condition at the film–substrate interface as
presented in Eqs. (65), (130) reduces to
�ep
oðzÞ ¼

F

k2
½1� cosh kZ þ tanh k sinh kZ� ð133Þ
Substituting Eq. (130) back into the normalized expression of Eq. (123) (i.e. the in-plane stresses are normal-
ized by the yield stress ry such that �ro ¼ �eo � �ep

o), one finds the following:
�ro ¼ �eo �
Eð�eo �

ffiffiffiffiffiffiffiffi
3=2

p
Þ

3ð1� mÞhþ E
1� cosh kð1� zÞ

cosh kþ d sinh k

� 	
Hð�eo �

ffiffiffiffiffiffiffiffi
3=2

p
Þ ð134Þ
The average stress in the thin-film, �rave
o , can be determined from an integration of Eq. (134) from 0 to 1, such

that:
�rave
o ¼ �eo �

Eð�eo �
ffiffiffiffiffiffiffiffi
3=2

p
Þ

3ð1� mÞhþ E
1� tanh k

kð1þ d tanh kÞ

� 	
Hð�eo �

ffiffiffiffiffiffiffiffi
3=2

p
Þ ð135Þ
Results in Figs. 2–4 are presented for h(1 � m)/E = 0.05 and m = 0.3. Different film thicknesses are repre-
sented by ‘/t = 0.1, 0.5, 1, 1.5, and 2. The level of surface energy in the film–substrate interface is controlled
by the ratio ‘S/‘. Results are presented for ‘S/‘ = 1, 10, and1 corresponding to soft, intermediate, and hard
interfaces, respectively.

In Figs. 2–4(a), normalized results for average film stress, Eq. (135), vs. applied biaxial strain eo are pre-
sented. It is clearly seen that the hardening tangent modulus and the film stress increase with decreasing
the film thickness, which agree qualitatively with the experimental observations. However, this increase is
smaller for soft interface than for intermediate and hard interfaces. Therefore, one anticipates that no size
effect should be encountered as ‘S/‘ goes to zero (i.e. the interface represents a free surface). The size effect
for hard interface is strongly pronounced. Similar trends have been obtained by Anand et al. (2005) and Fred-
riksson and Gudmundson (2005). They have also shown that the initial yield stress increases with increasing ‘/
t for hard interfaces (i.e. ‘S/‘!1). This sort of increase can be obtained by using their constitutive assump-
tions for the gradient-dependent Helmholtz free energy, such that the yield condition, Eq. (102), can be
expressed as follows:
f ¼ ksij � X ij þ Sijk;kk � ry 1þ Ep

ey

� �m

þ h‘2r2p ¼ 0 ð136Þ
where ry is the coarse grain yield strength, Ep is the generalized effective plastic strain given in Eq. (29), and
0 < m < 1. For simplicity, the above yield function is not used because the aforementioned closed form solu-
tions can not be obtained and a finite element implementation becomes necessary. This will be presented in
future work.

Figs. 2–4(b) and (c) show the variation of the biaxial stress and plastic strain, Eqs. (134) and (130), across
the film thickness. Instead of a uniform distribution of stress and plastic strain across the film thickness,
according to classical local plasticity, the stress increases and the plastic strain decreases as the film–substrate
interface is approached. However, this increase or decrease depends on the level of surface energy at the inter-
face. The higher is the surface energy (implied by higher ‘S/‘) the less plastic deformation is allowed at the
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interface, which results in a higher biaxial stress. For the hard interface, the biaxial stress at the interface is
equal to the elastic stress, ro = 6ry, i.e. the plastic strain is equal to zero.

Moreover, due to the constraint placed on the plastic strain, a boundary layer of thickness t/k develops
through the film thickness. Interestingly, the thickness of the boundary layer is independent of the biaxial
strain eo and does not vary with time, but scales with ‘. For example, ‘/t = 0.5 implies a boundary layer of
thickness 0.18t that only occupies a part of the film close to the interface, while ‘/t = 2 occupies almost the
entire film, 0.9t. This type of behavior applies to all values of ‘S/‘ as shown in Figs. 2–4(b) and (c). Moreover,
the results clearly show that the biaxial stress and plastic strain profiles tend to become homogeneous with
increased thickness and decrease surface energy due to smaller gradient effects. This means that gradients
eventually disappear for large thicknesses and small surface energies. As shown in Figs. 2–4(c), the increase
of plastic strain at z = 1 (free surface) overwhelms the increase of the plastic strain gradient due to the distri-
bution of gradients such that gradients decrease as the free boundary is approached and increase as the sub-
strate is approached. Therefore, the elimination of gradients spreads from the free boundary, propagating
through the entire thickness. Finally, the plastic strain becomes uniform across the thickness.

As the surface energy is increased, the reduced plastic strain in the boundary layer is compensated by higher
elastic strains, thus leading to higher stresses. Therefore, the results in Fig. 5 show that the hard interface
reveals a pronounced size effect as compared to the soft and intermediate interfaces.
5.2. Shear loading of a thin film on a substrate

An elasto-plastic thin film is bonded to a rigid substrate under pure shear loading as shown in Fig. 1. There-
fore, the bottom surface of the film is held fixed and a shear traction s0 is applied to the top surface in the x1-
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direction. The film is assumed to be infinitely long in the x1-direction and initially homogeneous and, there-
fore, the solution depends only on x3. Shu et al. (2001) have simulated this problem in a discrete dislocation
calculation of constrained plastic flow within a crystalline layer. The only non-vanishing stress and plastic
strain components are
r31 ¼ so; ep
31 ¼

1

2
cp

oðx3Þ ð137Þ
where s0 is homogeneous across the film thickness since the macroscopic force balance, Eq. (43), yields os0/o
x3 = 0 if the body forces and inertia are neglected.

The effective plastic strain p ¼
ffiffiffiffiffiffiffiffiffi
e

p
ije

p
ij

q
and its Laplacian $2p are given as
p ¼ 1

2
cp

oðx3Þ and r2p ¼ 1

2
cp

o;33 ð138Þ
where cp
0;33 ¼ ocp

0=ox3ox3. The stress–strain relationship is given by Hook’s law as
so ¼ G co � cp
oðx3Þ


 �
ð139Þ
where G is the elastic shear modulus. Substituting Eqs. (137) and (138) into the yield condition, Eq. (102),
yields the following ordinary differential equation for cp

0ðx3Þ:
cp
0;33 �

1

‘2
cp

o ¼ �
2

h‘2
ðso

ffiffiffi
3
p

syÞ ð140Þ
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where sy is the shear yield stress. In order to express the above equation in a non-dimensional form, one can
proceed completely analogous to biaxial loading in Section 5.1. With the aid of variable substitution (i.e.
z ¼ x3=t;�cp

0 ¼ cp
0=cy; and �s0 ¼ s0=sy with cy = sy/G being the shear yield strain), Eq. (140) can be written as
�cp
o;zz � k2�cp

o ¼ �F ð141Þ
with constant coefficients k and F are given by
k2 ¼ 1

ð‘=tÞ2
and F ¼ 2Gð�so �

ffiffiffi
3
p
Þ

hð‘=tÞ2
ð142Þ
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Non-uniform plastic strain can be enhanced by applying the micro-boundary conditions presented in Eq.
(119). The microtraction-free boundary condition, Eq. (66), is imposed at x3 = t such that
Fig. 6.
averag
o�cp
o

oz
¼ 0 at z ¼ 1 ð143Þ
The boundary condition at the film–substrate interface is given from Eqs. (119) to (127) as follows:
ð‘S=‘Þ�cp
o ¼ ð‘=tÞ o�cp

o

oz
at z ¼ 0 ð144Þ
Therefore, it is not necessary to assume an initial non-uniform plastic strain distribution across the film thick-
ness in order to enhance strain gradient evolution.

Solving the ordinary differential equation, Eq. (141), which is subjected to the boundary conditions in Eqs.
(143) and (144), one obtains a closed-form expression for �cp

0ðzÞ as
�cp
oðZÞ ¼

F

k2
1� cosh kð1� zÞ

cosh kþ c sinh k

� 	
ð145Þ
with
F

k2
¼ 2G

h
ð�so �

ffiffiffi
3
p
ÞHð�so �

ffiffiffi
3
p
Þ; d ¼ ‘=‘S ð146Þ
where Hð�s0 �
ffiffiffi
3
p
Þ is the Heaviside step function. Substituting Eq. (145) back into the normalized expression

of Eq. (139) (i.e. the shear stress is normalized by the yield stress sy such that �s0 ¼ �c0 � �cp
0), one can write the

total shear strain as follows:
�coðZÞ ¼ �so þ
2G
h
ð�so �

ffiffiffi
3
p
Þ 1� cosh kð1� zÞ

cosh kþ d sinh k

� 	
Hð�so �

ffiffiffi
3
p
Þ ð147Þ
It can be noted that the micro-boundary conditions, Eqs. (143) and (144), are crucial for obtaining size effect
solutions.

The average shear strain in the thin-film, �cave
0 , can be determined from an integration of Eq. (147) from 0 to

1, such that:
�cave
o ¼ �so þ

2G
h
ð�so �

ffiffiffi
3
p
Þ 1� tanh k

kð1þ d tanh kÞ

� �
Hð�so �

ffiffiffi
3
p
Þ ð148Þ
Results in Figs. 6–8 are presented for h/G = 0.15. The surface energy at the interface between the film and
the substrate is defined by the parameter d. Different film thicknesses are captured by different ‘/t. Different
interface properties are also presented here by ‘S/‘ = 1,10, and 1.
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Similar results to biaxial loading are obtained. In Fig. 6–8, normalized plots for average film strain,
Eq. (148), vs. the normalized applied stress �s0 and the plastic shear strain, Eq. (146), through the film thickness
at �s0 ¼ 2 are presented for different ‘S/‘. Instead of a uniform distribution across the film thickness, the plastic
shear strain decreases as the interface is approached due to the constraint. For a thick film, equivalent to
‘/t! 0, the results would coincide with the local plasticity theory solution, which would give homogeneous
plastic strain in the film. If ‘/t !1 a pure elastic state would be obtained in the film.

Figs. 6–8(a) show that the hardening increases with ‘/t, particularly, with increasing ‘S/t as is also seen for
biaxial strain. Moreover, it is shown in Figs. 6–8(b) that ‘S/‘ controls the constraint on cp

0 at the interface.
Furthermore, Figs. 6–8(b) clearly show a boundary layer near the interface, in which the plastic shear strain
is reduced in order to meet the microtraction boundary condition, Eq. (144). Inspection of the expression in
Eq. (145) reveals that the thickness of this boundary layer is set by the length scale ‘. For larger values of ‘ the
boundary layer thickness is of the same order as the specimen thickness t and the effect of the boundary con-
dition is noticeable even near the free surface (at x3/t = 0). If ‘ is decreased, the boundary layer becomes thin-
ner and the plastic shear strain profile approaches that of the classical plasticity.
5.3. Thermal loading of a thin film on a substrate

The problem of a thin film on a semi-infinite substrate subjected to thermal loading will be studied now.
This problem has been investigated by Nicola et al. (2003) using discrete-dislocation dynamics. A quasi-static
monotonic thermal loading is imposed by cooling the film–substrate system from an initial temperature T0, at
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which the film and substrate are stress free and dislocation free. The substrate undergoes unconstrained con-
traction but, due to the mismatch between the thermal-expansion coefficient of the film (af) and the substrate
(aS), stress develops in the film; tensile for af > aS.

Since the film is infinitely long in the x1-direction and initially homogeneous, the solution depends only on
x3 such that by assuming a plane strain problem in the x2-direction one can write
r33 ¼ r13 ¼ 0; r11 ¼ roðx3Þ ð149Þ
where the stress field r0(x3) is non-uniform and unknown at this stage. Because of symmetry and because the
strain components do not depend on x1; _e11 must be uniform throughout the film such that from the plastic
incompressibility assumption one can express the non-vanishing plastic strain components in the film as
ep
11 ¼ �

1

2
ep

33 ¼ ep
oðx3Þ ð150Þ
The effective plastic strain p ¼
ffiffiffiffiffiffiffiffiffi
e

p
ije

p
ij

q
and its Laplacian are $2p given as
p ¼
ffiffiffi
5
p

ep
o and r2p ¼

ffiffiffi
5
p

ep
o;33 ð151Þ
where e
p
0;33 ¼ oe

p
0=ox3ox3. For plane strain condition, the stress–strain rate relationship can be expressed as

follows:
_r11ðx3Þ ¼
E

1� m2
_ee

11ðx3Þ ð152Þ
The rate of the total strain in the film is decomposed into an elastic part, a plastic part, and a thermal part
given by
_e11 ¼ _ee
11 þ _ep

11 þ ð1þ mÞaf
_T ð153Þ
The total strain rate in the elastic substrate is given by
_e11 ¼ ð1þ mÞaS
_T ð154Þ
where compatibility of deformation between the film and the substrate requires that _e11 be the same and uni-
form throughout the film. Hence, substituting Eqs. (153) and (154) into Eq. (152) along with the time deriv-
ative of Eqs. (149)2 and (150) yields
_roðx3Þ ¼
E

1� m2
½ð1þ mÞðaS � afÞ _T � _ep

oðx3Þ� ð155Þ
One can express the consistency condition from the yield condition in Eq. (102) as
_f ¼ 1

3
_ro � h_ep

o þ h‘2 _ep
o;33 ¼ 0 ð156Þ
Substituting Eq. (155) into Eq. (156), yields the following ordinary differential equation for _ep
0ðx3Þ:
_ep
o;33 �

1

‘2
þ E

3ð1� mÞh‘2

� 	
_ep

o ¼ �
E

3ð1� mÞh‘2
ðaS � afÞ _T ð157Þ
It is convenient to express the above equation in a non-dimensional form with the aid of variable substitution
(i.e. z = x3/t) such that
_ep
o;zz � k2 _ep

o ¼ � _F ð158Þ
with constant coefficients k and _F given through
k2 ¼ 1

ð‘=tÞ2
1þ E

3ð1� m2Þh

� �
and _F ¼ EðaS � afÞ _T

3ð1� mÞhð‘=tÞ2
ð159Þ
Now the null micro-boundary conditions as presented by Eqs. (66) and (65) are examined. The microtraction-
free boundary condition at the film top (i.e. x3 = t), where dislocations can freely leave the film, and the micro-
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plastic-clamped boundary condition at the film–substrate interface, where slip cannot occur, such that one can
write, respectively, the following:
oep
o

oz
¼ 0 at z ¼ 1 and ep

o ¼ 0 at z ¼ 0 ð160Þ
Solving the ordinary differential equation, Eq. (158), which is subjected to the boundary conditions in Eqs.
(160), one obtains a closed-form expression for _ep

0ðzÞ as
_ep
oðzÞ ¼

_F

k2
ð1� cosh kzþ tanh k sinh kzÞ ð161Þ
where
_F

k2
¼ Eð1þ mÞðaS � afÞ _T

3ð1� m2Þhþ E
ð162Þ
In the elastic range, one can integrate Eq. (155) from zero to the onset of yield (at r0 = c and at temperature
Ty < T0) by setting _ep

0 ¼ 0, such that the following expression can be obtained for c = ry in terms of Ty:
ry ¼ �
E

1� m
ðaf � aSÞðT y � T oÞ ð163Þ
where ry is the uniform film stress at the onset of yield (at yield temperature Ty). Moreover, substituting Eqs.
(161) and (162) back into Eq. (155), one finds a linear relation between _r0 and _T given by
_roðzÞ ¼
E

1� m2
ð1þ mÞ � Eð1þ mÞ

3ð1� m2Þhþ E
ð1� cosh kzþ tanh k sinh kzÞ

� 	
ðaS � afÞ _T ð164Þ
In the plastic range, one can integrate Eqs. (161) and (164) from the onset of yield to the current stress r0 and
temperature T such that one gets, respectively,
ep
oðzÞ ¼

ð1� m2Þc
E

ð1� cosh kzþ tanh k sinh kzÞ ð165Þ
and
roðzÞ ¼ rn þ cð1� cosh kzþ tanh k sinh kzÞ ð166Þ
where rn and c are given by
rn ¼ �
E

1� m
ðaf � aSÞðT � T oÞ; c ¼ E2ðaf � aSÞðT � T yÞ

ð1� mÞ 3ð1� m2Þhþ E½ � ð167Þ
Here rn is the stress in the absence of plasticity; for T = TY one retains Eq. (163).
The average stress in the thin-film, rave

0 , can be determined from an integration of Eq. (166), such that:
rave
o ¼ rn þ c 1� tanh k

k

� �
ð168Þ
Results in Fig. 9 are presented for straining of an aluminum film on a silicon substrate during thermal load-
ing. Typical properties of aluminum are adopted (E = 70 GPa, m = 0.33, af = 23.2 · 10�6/K, ry = 36 MPa,
and h = 100 MPa). The silicon coefficient of thermal expansion is taken to be aS = 23.2 · 10�6/K. Results
are obtained by cooling the film–substrate system from an initial temperature at T0 = 600 K to T = 400 K.
The temperature at which yielding occurs is obtained from Eq. (163) to be Ty = 582 K. Different film thick-
nesses are represented by ‘/t = 0.1, 0.5,1,1.5, and 2. Very similar qualitative results to that presented in Fig. 4
are obtained. The results in Fig. 9(a) show that the average in-plane stress, Eq. (168), and the integral of Eq.
(154), in the film is strongly dependent on the film thickness. The stress is normalized by the elastic stress rn,
Eq. (167)1. Fig. 9(b) shows the average stress-temperature curves given by Eqs. (167) and (168), which rein-
forces the strong size effect. Moreover, the linear hardening is consistent with the discrete dislocation simula-
tions obtained by Nicola et al. (2003). Fig. 9(c) and (d) show the variation of the stress and plastic strain, Eqs.
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(166) and (165), across the film thickness. The stress increases and the plastic strain decreases as the film–sub-
strate interface is approached. These results are in good agreement with the discrete dislocation simulations by
Nicola et al. (2003).
6. Concluding remarks

Gradient-dependent variational and thermodynamic framework is presented in this paper that extends the
classical plasticity to higher-order gradient plasticity theory. Higher-order stresses and higher-order boundary
conditions are formulated in a unified way. It is shown that a non-local form of the Clausius–Duhem inequal-
ity should be used in deriving gradient-dependent constitutive equations. As compared to the classical Clau-
sius–Duhem inequality an additional term that accounts for the non-local interactions at interfaces and free
surfaces appears in the non-local Clausius–Duhem inequality.

Moreover, the proposed framework is a two non-local parameter theory that takes into account large vari-
ations in the plastic strain tensor and large variations in the accumulated (effective) plastic strain. It is argued
that the gradient of the plastic strain tensor, e

p
ij;k, and the gradient of the effective plastic strain, p,k, should be

incorporated when formulating a gradient plasticity theory since the former accounts for the Nye’s dislocation
density (or incompatibility) tensor and the later accounts for the accumulation of the geometrically necessary
dislocations. The thermodynamic conjugate force associated with e

p
ij;k introduces kinematic hardening whereas

the conjugate force of p,k introduces isotropic hardening.
The formulation of higher-order boundary conditions is very important within strain gradient plasticity

theory, especially, at interfaces, grain, or phase boundaries. A framework for the formulation of these addi-
tional boundary conditions is presented. The microlevel significance and nature of these boundary conditions
is emphasized. It is shown for certain problems (e.g. biaxial loading of a film–substrate system, shear loading
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of a constrained layer, or thermal loading of film–substrate system), in which the material is initially homog-
enous, that in the absence of the higher-order boundary conditions, the material would support uniform fields
and hence the constitutive gradient-dependence would have no influence. Therefore, strain gradients come into
play if the boundaries are assumed to constrain the plastic flow. This constraint is set by the level of surface/
interface energy. Hence, this is a central part for further development of strain gradient plasticity theory.

Illustrations are given in this paper for both constrained and unconstrained plastic deformation at a bound-
ary by employing a simplified form of the constitutive equations. These examples have shown that the present
theory can qualitatively describe many features of the size effect, including development of boundary layers
and the strain hardening. In the present examples of a thin film–substrate system, the substrate is assumed
to be soft, intermediate, or hard depending on the level of interface energy where dislocations in the film
are partially or completely blocked as they approach the film–substrate interface. The results show a strong
dependence on the interface energy. A larger energy results in a more pronounced size effect. Moreover, dis-
locations approaching a free surface could be free to pass out and producing unconstrained plastic strain,
which results in vanishing plastic strain gradients at the free surface. However, dislocations could pileup par-
tially at a free surface depending on the magnitude of the microtraction stress which increases as the surface-
to-volume ratio increases; therefore, non-vanishing local gradients in plastic strain could be encountered at the
free surface. The authors believe that the later effect is crucial for the interpretation of size effects encountered
in nano systems. In small confined volumes the microtraction stress could be high enough at the free surfaces
which results in a micro-clamped boundary where dislocations tend to pileup leading to the presence of strain
gradients. Therefore, the dislocation pileups at interface/free surfaces can be modeled by non-vanishing micro-
traction stresses, or equivalently, finite expenditure of non-local power.

Similarly to numerous gradient-dependent models, the full utility of the gradient-type theories in bridging
the gap between modeling, simulation, and design of modern technology hinges on one’s ability to determine
accurate values for the constitutive length scale parameter ‘ that scales the effects of strain gradients. The study
of Begley and Hutchinson (1998), Nix and Gao (1998), Shu and Fleck (1998), Yuan and Chen (2001), Abu Al-
Rub and Voyiadjis (2004a,b), and Voyiadjis and Abu Al-Rub (2004) indicated that indentation experiments
might be the most effective test for measuring ‘. For more details about the physical origin and the measure-
ment of the material length scale ‘ the reader is referred to Abu Al-Rub (2004) and Abu Al-Rub and Voyiadjis
(2006, in press).

In conclusion, if continuum theories are to be used to predict elastic-plastic behavior at the micron or sub-
micron length scales, a higher-order theory is likely to be required. Moreover, it would be of particular interest
to compare the effects of microtraction stresses at interfaces and free surfaces in the present gradient theory
with discrete dislocation dynamics simulations.
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